Water resources are of water that are potentially useful for humans, for example as a source of drinking water supply or irrigation water. These resources can be either Fresh water from natural sources, or water produced artificially from other sources, such as from reclaimed water (wastewater) or Desalination water (seawater). 97% of the water on Earth is saline water and only three percent is fresh water; slightly over two-thirds of this is frozen in and polar climate . The remaining unfrozen freshwater is found mainly as groundwater, with only a small fraction present above ground or in the air. Natural sources of fresh water include surface water, under river flow, groundwater and ice. People use water resources for agriculture, industrial and household activities.
Water resources are under threat from multiple issues. There is water scarcity, water pollution, water conflict and climate change. Fresh water is in principle a renewable resource. However, the world's supply of groundwater is steadily decreasing. Groundwater depletion (or overdrafting) is occurring for example in Asia, South America and North America.
Humans often increase storage capacity by constructing reservoirs and decrease it by draining wetlands. Humans often increase runoff quantities and velocities by paving areas and channelizing the stream flow.
Natural surface water can be augmented by importing surface water from another watershed through a canal or pipeline.
Brazil is estimated to have the largest supply of fresh water in the world, followed by Russia and Canada.
A 2021 study proposed hypothetical portable solar-powered atmospheric water harvesting devices. However, such off-the-grid generation may sometimes "undermine efforts to develop permanent piped infrastructure" among other problems.
Water is used in renewable power generation. Hydroelectric power derives energy from the force of water flowing downhill, driving a turbine connected to a generator. This hydroelectricity is a low-cost, non-polluting, renewable energy source. Significantly, hydroelectric power can also be used for load following unlike most renewable energy sources which are intermittent. Ultimately, the energy in a hydroelectric power plant is supplied by the sun. Heat from the sun evaporates water, which condenses as rain in higher altitudes and flows downhill. Pumped-storage hydroelectric plants also exist, which use grid electricity to pump water uphill when demand is low, and use the stored water to produce electricity when demand is high.
Thermoelectric power plants using cooling towers have high consumption, nearly equal to their withdrawal, as most of the withdrawn water is evaporated as part of the cooling process. The withdrawal, however, is lower than in once-through cooling systems.
Water is also used in many large scale industrial processes, such as thermoelectric power production, oil refining, fertilizer production and other chemical plant use, and natural gas extraction from shale rock. Discharge of untreated water from industrial uses is pollution. Pollution includes discharged solutes and increased water temperature (thermal pollution).
Drinking water is water that is of sufficiently high quality so that it can be consumed or used without risk of immediate or long term harm. Such water is commonly called potable water. In most developed countries, the water supplied to domestic, commerce and industry is all of drinking water standard even though only a very small proportion is actually consumed or used in food preparation.
844 million people still lacked even a basic drinking water service in 2017. Of those, 159 million people worldwide drink water directly from surface water sources, such as lakes and streams. One in eight people in the world do not have access to safe water. Unsafe drinking water leads to 1.2 million deaths per year according to the World Bank.Nordquist, Jennifer DJ, and Dan Katz. The World Bank and the International Monetary Fund Should Do Less to Achieve More. Center for Strategic and International Studies (CSIS), 2024. p. 7. JSTOR website Retrieved 24 Apr. 2025.
Ideally, water resource management planning has regard to all the competing demands for water and seeks to allocate water on an equitable basis to satisfy all uses and demands. As with other resource management, this is rarely possible in practice so decision-makers must prioritise issues of sustainability, equity and factor optimisation (in that order!) to achieve acceptable outcomes. One of the biggest concerns for water-based resources in the future is the sustainability of the current and future water resource allocation.
Sustainable Development Goal 6 has a target related to water resources management: "Target 6.5: By 2030, implement integrated water resources management at all levels, including through transboundary cooperation as appropriate."Ritchie, Roser, Mispy, Ortiz-Ospina (2018) "Measuring progress towards the Sustainable Development Goals." (SDG 6) SDG-Tracker.org, websiteUnited Nations (2017) Resolution adopted by the General Assembly on 6 July 2017, Work of the Statistical Commission pertaining to the 2030 Agenda for Sustainable Development ( A/RES/71/313)
Much effort in water resource management is directed at optimizing the Water use and in minimizing the environmental impact of water use on the natural environment. The observation of water as an integral part of the ecosystem is based on integrated water resources management, based on the 1992 Dublin Statement (see below).
Sustainable water management requires a holistic approach based on the principles of Integrated Water Resource Management, originally articulated in 1992 at the Dublin (January) and Rio (July) conferences. The four Dublin Principles, promulgated in the Dublin Statement are:
Implementation of these principles has guided reform of national water management law around the world since 1992.
Further challenges to sustainable and equitable water resources management include the fact that many water bodies are shared across boundaries which may be international (see water conflict) or intra-national (see Murray-Darling basin).
Some scholars say that IWRM is complementary to water security because water security is a goal or destination, whilst IWRM is the process necessary to achieve that goal.
IWRM is a paradigm that emerged at international conferences in the late 1900s and early 2000s, although participatory water management institutions have existed for centuries. Discussions on a holistic way of managing water resources began already in the 1950s leading up to the 1977 United Nations Water Conference.Asit K.B. (2004). Integrated Water Resources Management: A Reassessment, Water International, 29(2), 251 The development of IWRM was particularly recommended in the final statement of the ministers at the International Conference on Water and the Environment in 1992, known as the Dublin Statement. This concept aims to promote changes in practices which are considered fundamental to improved water resource management. IWRM was a topic of , which was attended by a more varied group of stakeholders than the preceding conferences and contributed to the creation of the GWP.
In the International Water Association definition, IWRM rests upon three principles that together act as the overall framework:
Operationally, IWRM approaches involve applying knowledge from various disciplines as well as the insights from diverse stakeholders to devise and implement efficient, equitable and sustainable solutions to water and development problems. As such, IWRM is a comprehensive, participatory planning and implementation tool for managing and developing water resources in a way that balances social and economic needs, and that ensures the protection of ecosystems for future generations. In addition, in light of contributing the achievement of Sustainable Development goals (SDGs), IWRM has been evolving into more sustainable approach as it considers the Nexus approach, which is a cross-sectoral water resource management. The Nexus approach is based on the recognition that "water, energy and food are closely linked through global and local water, carbon and energy cycles or chains."
An IWRM approach aims at avoiding a fragmented approach of water resources management by considering the following aspects: Enabling environment, roles of Institutions, management Instruments. Some of the cross-cutting conditions that are also important to consider when implementing IWRM are: Political will and commitment, capacity development, adequate investment, financial stability and sustainable cost recovery, monitoring and evaluation. There is not one correct administrative model. The art of IWRM lies in selecting, adjusting and applying the right mix of these tools for a given situation. IWRM practices depend on context; at the operational level, the challenge is to translate the agreed principles into concrete action.
|
|